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We analyze the behavior of a suspension of active polar particles under shear. In the absence of external
forces, orientationally ordered active particles are known to exhibit a transition to a state of nonuniform
polarization and spontaneous flow. Such a transition results from the interplay between elastic stresses, due to
the liquid crystallinity of the suspension, and internal active stresses. In the presence of an external shear, we
find an extremely rich variety of phenomena, including an effective reduction �increase� in the apparent
viscosity depending on the nature of the active stresses and the flow-alignment property of the particles, as well
as more exotic behaviors such as a nonmonotonic stress–strain-rate relation and yield stress for large activities.
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I. INTRODUCTION

Colonies of swimming bacteria, in vitro mixtures of cy-
toskeletal filaments and motor proteins, and vibrated granu-
lar rods are examples of active systems composed of inter-
acting units that consume energy and collectively generate
motion and mechanical stresses. Due to their elongated
shape, active particles can exhibit orientational order at high
concentration and have been likened to “living liquid crys-
tals” �1�. Their rich collective behavior includes nonequilib-
rium phase transition and pattern formation on mesoscopic
scales �2–10�. It has been modeled by continuum equations
built by modifying the hydrodynamics of liquid crystals to
include nonequilibrium terms that account for the activity of
the system �2–4� or derived from specific microscopic mod-
els �11,12�.

A striking property of confined active liquid crystals is the
instability of the uniform aligned homogeneous state and the
onset of spontaneously flowing states, both stationary and
oscillatory �13,14�. This occurs because local orientational
order generates active stresses that are in turn balanced by
flow, yielding a state that can support local inhomogeneities
in the flow velocity and the local alignment, while maintain-
ing a net zero force. Loosely speaking, a confined active
liquid crystal “shears itself” even in the absence of externally
applied forces. It is then not surprising that the rheology of
such active liquid crystals in response to an external shear
will be very rich.

Phenomenological work by Hatwalne et al. �15� first
pointed out that activity lowers the linear bulk viscosity of
tensile suspensions, such as most swimming bacteria, while
it enhances the viscosity of contractile systems, and that this
enhancement may become very large near the isotropic-
nematic transition. A semimicroscopic model of contractile
suspensions of motor-filaments mixtures confirmed these re-
sults and predicted an actual divergence of the viscosity of
contractile suspensions at the transition �16�. Recent numeri-
cal studies of active nematic films by Cates et al. �17� con-
firmed that this result survives when the effect of boundaries
is included. In addition, it was found that tensile nematic
suspensions can enter a regime of vanishing apparent viscos-

ity in proximity of the isotropic-nematic phase transition.
Such a “superfluid” window was interpreted by the authors
of Ref. �17� as the appearance of bulk shear bands accom-
modating a range of macroscopic shear rates at zero stress.
Finally, the predicted activity-induced thinning of bacterial
suspensions has been demonstrated in recent experiments in
Bacillus subtilis �18–20�.

Active particles exert forces on the surrounding fluid, re-
sulting in local tensile or contractile stresses proportional to
the amount of orientational order, �ij

� ��ninj, where � is
proportional to the force exerted by the active particles on
the fluid and n a unit vector denoting the direction of broken
orientational symmetry. The sign of � determines whether
the flow generated by the active particles is tensile ���0� or
contractile ���0�. In the case of swimming organisms, the
former situation describes “pushers,” i.e., most bacteria �e.g.,
E. coli�, while the latter corresponds to “pullers” �e.g.,
Chlamydomonas� �see Fig. 1� �26�. An important distinction
between uniaxial active particles concerns the possibility of
forming phases with or without a nonzero macroscopic po-
larization. Apolar particles are fore-aft symmetric and can
form nematic phases in which macroscopic quantities are
invariant for n→−n. Polar particles can also form phases
characterized by a nonzero macroscopic polarization in the
direction of a polar director p in which they undergo collec-
tive motion with mean velocity v��p, with � is the typical
self-propulsion velocity. This directed motion occurring in

FIG. 1. �Color online� Schematic example of the flow field sur-
rounding tensile �left� and contractile �right� swimming
microorganisms.
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polar suspensions contributes to a nonequilibrium local stress
of the form �ij

� ����ipj +� jpi�.
Most theoretical works have focused on the rheology of

active nematic ��=0�, while the shear response of active
polar suspensions is far less explored �18,20�. We find that
for a fixed value of �, the behavior of active suspensions
depends on the interplay between the local contractile or ten-
sile stresses, embodied in the parameter �, and the flow-
aligning behavior of liquid crystalline particles, described by
the flow-alignment parameter �. In passive liquid crystals,
the magnitude of � controls how the director field responds
to a large shear flow away from boundaries. For ����1, the
director tends to align to the flow direction at an angle �0
such that cos 2�0=1 /�, while for ����1, it forms rolls
throughout the systems. These regimes are known as “flow
aligning” and “flow tumbling,” respectively. The hydrody-
namic coupling between local orientation and flow, embod-
ied in the parameter �, is a collective property of the system
capturing the interaction between many active elements and
the local flow velocity. The value of � is mainly determined
by the shape of the active particles. Rod-shaped particles
typically have ��0, spherical particles have �=0, while the
case ��0 describes disk-shaped molecules such as those
found in discotic liquid crystals �21�. Understanding of the
complex rheology of polar and nematic active suspensions
requires exploring the full parameter space, including the
important role of boundary conditions. One of the important
results of this work is a remarkable exact duality that holds at
small shear rates and shows that tensile ���0� rod-shaped
flow-aligning particles ���1� are rheologically equivalent to
contractile ���0� discotic flow-tumbling particles �−1��
�0�. Using this result, we present below a unified descrip-
tion of the linear rheology of active suspensions of both po-
lar and apolar particles. Some of the results are summarized
in the “phase diagram” of Fig. 2. This figure shows that the
rheological properties of an active film subject to an external
shear are closely related to the onset of spontaneous flow in
the absence of shear, highlighting the parallel role played in
active system by mechanical driving forces, such as a mac-
roscopic strain rate, and internal active driving forces propor-
tional to � and �.

An unsheared active film exhibits a transition from the
homogeneous aligned state to a “spontaneously flowing”
state, characterized by spatially inhomogeneous velocity and
director profiles �13�. The transition occurs at a critical ac-
tivity �c1 in a film bounded by one no-slip substrate and a
surface that can freely slide and at a larger value, �c2��c1,
in a film bounded by two no-slip planes. The lines separating
regions of different shades in Fig. 2 are the boundaries
�c1�� ,�� �see Eq. �8� below� separating regions of spontane-
ous flow ������c1� from regions where the homogeneous
aligned state is stable ������c1�. Interestingly, when the film
is subject to an external shear, we find that the flow proper-
ties change their qualitative behavior at exactly these same
critical values of activity. For �c1� �����c2, the theoretical
stress-strain rate curves obtained from our one-dimensional
model are nonmonotonic �see Fig. 7� and the active suspen-
sion is strongly non-Newtonian. We suggest a number of
different interpretations of the nonmonotonic part of the
stress-strain rate curve shown in Fig. 8. These include mac-

roscopic “superfluidlike” behavior �17� with zero effective
viscosity, yield-stress behavior, or hysteresis. Finally, for
�����c2, the theoretical stress-strain curve has a discontinu-
ous jump at zero strain rate, corresponding to a finite “spon-
taneous stress” in the absence of applied shear �16�.

II. MODEL

Our model of active suspension consists of a two-
dimensional film of rodlike particles of length � confined to
a channel of infinite length along the x axis and finite thick-
ness L along the y axis �see Fig. 3�. Because of the chosen
geometry, the system is invariant for translations along the x
axis. The total density of the suspension, 	=Mc+	solvent,
with c the concentration of active particles and M their mass,
is assumed to be constant, thus � ·v=0, with v the flow ve-

FIG. 2. �Color online� Regions of parameters where spontane-
ous flow occurs in an unsheared active film on a substrate. The
regions of spontaneous flow are bounded by the critical activity
�c1��� given in Eq. �8� �solid and dashed lines� and are shaded
orange, with lighter shades corresponding to increasing values of �.
The same critical activity also separates the regions �����c1 where
the theoretical stress-strain curves are monotonic and the active
suspension is either thinned or thickened by activity at small shear
rates, as indicated, from the regions �����c1 where the theoretical
stress-strain curves are nonmonotonic, with possible “superfluid” or
hysteretic behavior.

FIG. 3. �Color online� Schematic representation of a quasi-one-
dimensional film of thickness L. In our model, the film is sitting on
a nonslipping surface and is sheared from the top at constant veloc-
ity v0. The polar rods form an angle � with respect to the infinite
direction x of the film. Because of the quasi-one-dimensional ge-
ometry, the system is invariant for translations along the x axis.
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locity. We assume that the film is sheared at a constant �mac-
roscopic� rate 
̇ by keeping the lower plate at y=0 fixed,
while the upper plate at y=L is moved at constant velocity
v0. The macroscopic shear rate is defined then as 
̇=v0 /L
=�0

L�dy /L�u, where the rate-of-strain tensor uij = ��iv j
+� jvi� /2 has only nonzero components uxy =uyx=�yvx /2
�u /2. Theoretical stress-strain curves are obtained by fixing
the macroscopic strain rate 
̇ and calculating the resulting
stress �.

We consider a polarized active suspension and focus only
on spatial variations in the direction of the polarization P.
The hydrodynamic equations for an active polar suspension
have been formulated by incorporating the active contribu-
tions �proportional to the rate of energy consumed by the
active units� into the hydrodynamic equations of a passive
polar liquid crystalline film. Some of the active contribu-
tions, discussed above, are not allowed by the conditions
which define liquid crystal systems at equilibrium and hence
are intrinsic to active systems. Other terms have the same
form as those of passive polar liquid crystals and can simply
be included by modifying the prefactors of the terms ob-
tained from a passive system. As such, the modified “pas-
sive” contributions to the equations of motion can be de-
scribed starting from the nonequilibrium analog of the Frank
free energy of a suspension of polar particles in a solvent

F = 	
r

C

2
��c

c0
�2

+
a2

2
�P�2 +

a4

4
�P�4 +

K1

2
�� · P�2

+
K3

2
�� � P�2 + B1

�c

c0
� · P + B2�P�2 � · P

+
B3

c0
�P�2P · �c ,

with C the compressional modulus and K1 and K3 the splay
and bend elastic constants. The parameters ai ,Bi ,Ki ,C are
understood to have both passive and active contributions. In
the following, we will take K1=K3=K. The last three terms
in the expression of the free-energy couple concentration and
splay and are also present in equilibrium polar suspensions.

The dynamics of the concentration and the polarization
are described by

�tc = − ��c�v + c�1P� + �h + �f� , �1a�

��t + �v + c�2P���Pi + �ijPj = �uijPj + hi + �f i, �1b�

with �ij = ��iv j −� jvi� /2 the vorticity tensor, h=−�F /�P the
molecular field, and f=−���F /�c�. The flow velocity satis-
fies the Navier-Stokes equation �27�

	��t + v · ��vi = � j�ij , �2�

with � ·v=0 to guarantee incompressibility, and stress tensor
given by dissipative, reversible, and active contributions,
�ij =2�uij +�ij

r +�ij
� +�ij

�, with

�ij
� =

�c2


�PiPj + �ij� , �3a�

�ij
� =

�3c2


��iPj + � jPi + �ij � · P� , �3b�

�ij
r = − ��ij −

�

2
�Pihj + Pjhi� +

1

2
�Pihj − Pjhi� , �3c�

where � is the pressure, � the shear viscosity, and we have
assumed an isotropic viscosity tensor. We now consider a
solution deep in the polarized state and neglect fluctuations
in the magnitude of the polarization, i.e., assume �P�
=�−a2 /a4. For simplicity, we also redefine units so that �P�
=1. The condition P=const determines the longitudinal part
h� =p ·h of the molecular field that can then be eliminated
from the hydrodynamic equations. The details associated
with imposing the constancy of the magnitude of the polar-
ization and deriving the hydrodynamic equations solely in
terms of the polar director p=P / �P� are given in the Appen-
dix. With this choice, the hydrodynamic equations for p and
c can be written in the form

�tc + � · c�v + �1cp� = �i�Dij� jc + �
�uklpkplpi� , �4a�

��t + �v + �2cp� · ��pi + �ijpj

= �ij
T��ujkpk +

w

c0
�ic −


�w

c0
� j � · p + ��2pj� , �4b�

with 
�=� /, �=K, w=�B1−B3�, and �ij
T =�ij − pipj the

transverse projection operator. Dij is an effective diffusion
tensor given by

Dij = D1�ij + D2pipj , �5�

where D1=D−
�w /c0 and D2=
�w /c0−D�. Finally, the re-
versible part of the stress tensor �ij

r becomes

�ij
r = − �ij� + �pipjpk� w

c0
�kc + K�2pk�

−
�

2
� w

c0
�pi� jc + pj�ic� + K�pi�

2pj + pj�
2pi��

+
1

2
� w

c0
�pi� jc − pj�ic� + K�pi�

2pj − pj�
2pi��

− ���pipj�Dpk�kc + wpk�k�lpl� +
�2


pipjuklpkpl.

The equations for an active suspension have been written
down phenomenologically and also derived from various
semimicroscopic models. The structure of the equations is
generic and applies to a broad class of “living liquid crys-
tals.” The parameters in the equations are of course system
and model specific. In motor-filament mixtures, activity
arises from clusters of motor proteins crosslinking pairs of
filaments. The active couplings are therefore of order c2 in
this case �11,12�. In suspensions of swimming microorgan-
isms, activity can be described in terms of the active force f
that each swimmer exerts on the surrounding fluid. In this
case, the active couplings arise even at the single-swimmer
level and are of order c �22�. Estimates for the active param-
eters obtained from semimicroscopic models are summarized
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in Table I. The equations for an active nematic can be ob-
tained from those of a polar systems by setting �i=w=0. In
the following, we assume �1=�3=−�2=�, as appropriate for
motor filament systems.

It is convenient to work with dimensionless quantities.
Spatial variables are normalized with the length � of the
rods. Thus, y→y /�. Temporal variables are normalized with
the time scale of splay and bending fluctuations, thus t
→ t /�, where �=�2 /�. A mass scale is set by � /. All the
other quantities are normalized accordingly. In these units,
the hydrodynamic equations for the rods concentration �
=c /c0, with c0 the mean density, and the director-
polarization angle �, with p= �cos � , sin ��, for the geometry
of interest are

	��t + vy�y�vx = �y�xy , �6a�

�t� = �y���2 sin � + D����y� + �u sin � sin 2�� , �6b�

�t� = − �� sin ��y� + w cos ��y� + K����y
2�

+ w cos � sin ���y��2 − u�1 − � cos 2�� , �6c�

where D���=D�1−� sin2 ��−w cos2 � is a diffusion coeffi-
cient, K���=1−w cos2 � describes the energy cost of bend
and splay deformations, and � is the flow-alignment param-
eter. In a steady state, the stress tensor �xy �� is constant
across the film and it is given by

� = u�� + �2 sin2 2�� + �w sin2 � sin 2���y��2

+ �w − �w0 − ��w − w0�cos 2��cos ��y� + ��2 sin 2�

− 2��2 sin ��y� , �7�

with � the bare viscosity and w0 a constant proportional to
the ratio between the translational and orientational diffusion
coefficients �i.e., w0�D /K�. Our goal is to study the relation

between the induced shear stress � and the applied shear rate

̇ as a function of the two fundamental active parameters �
and � representing the magnitude of the internal contractile-
tensile stress and the velocity scale of directed motion. In
order to construct a � vs 
̇ map, we integrate Eqs. �6� nu-
merically with boundary conditions vx�0�=0 and vx�L�=v0,
��0�=��L�=0 and jy�0�= jy�L�=0, which implies ���0�
=���L�=0. As initial conditions, we choose ��y ,0�=0 and
��y ,0�=1.

In the absence of applied shear, active polar and nematic
films exhibit a transition from a quiescent �vx=0� aligned
��=0� state to a state of spontaneous flow, with both inho-
mogeneous alignment and velocity profiles. The critical
value of activity where the instability occurs depends on
boundary conditions. For a film bounded by a no-slip sub-
strate and a surface that can freely slide, it is given by �14�

�c1��,�� = ��

L
�2 ��1 − w�

2�0
2�1 − ��

+
�w�� + �1 − ��2�
2�1 − ���D − w�

�8�

and the spontaneously flowing state has �=0. For a film
bounded by two no-slip surfaces, the critical value is �c2
=4�c1 and the spontaneously flowing state is characterized
by a finite value of �. The regions of spontaneous flow in the
�� ,�� plane are displayed in shades of orange in Fig. 2. In
these regions, the film exhibits strongly nonlinear rheology,
with nonmonotonic stress-strain curves, as described below.

III. LINEAR RHEOLOGY OF WEAKLY ACTIVE
SYSTEMS

For �����c1, corresponding to the gray regions of Fig. 2,
the stress-strain curves are monotonic and remain linear over
a broad range of 
̇, as shown in Fig. 4. Non-Newtonian be-
havior sets in at smaller values of 
̇ with increasing �. As the
value of � is increased, the slope of the linear portion of the
stress-strain curves for ���c1 decreases with increasing �,
indicating that contractile active stresses lower the effective
viscosity of the system. The effective linear viscosity can be
calculated analytically by solving Eqs. �6c� and �6b� pertur-

TABLE I. Estimates of active parameters for two types of active
suspensions: �i� mixtures of cytoskeletal filaments and cross-linking
motor proteins �11,12,23�, with m̃ a dimensionless density of
crosslinking motor clusters, u0 the speed at which motor proteins
walk on filaments, in turn proportional to the rate of adenosine
triphosphate �ATP� consumption, and �u1��u0�m, with �m the size
of a motor cluster; and �ii� swimming microorganisms �22�, where
vsp��f /��� is the self-propulsion speed of an individual organisms,
with f the force that swimmers exert on the fluid, ��1 a dimen-
sionless number determined by the shape of the swimmer, and �
�1 / is the longitudinal friction coefficient of a rodlike swimmer
of length �. For both systems, the precise values of parameters
obtained from each microscopic model differ from the above by
numerical constants of order unity.

Filaments-motors ��� Swimmers ���

�1 m̃u0�2 vsp /c

�2 −m̃u0�2 vsp /c

w m̃u0�2 −vsp /c

� m̃u1�2 f�3 / ��c�
�3 m̃u0�2 vsp /c

FIG. 4. �Color online� Stress ��� vs strain �
̇� for an active
nematic ��=w=0� suspension for various �. Flow-tumbling sys-
tems with �=0.1 are marked by circles and flow-aligning systems
with �=1.9 by triangles. Other parameters are set L /�=5, �=1,
�0=1, D=1, and �=0.3. Inset shows the comparison to the analyti-
cal result given in Eq. �9�.
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batively in � by expanding the fields � and � as �=�0
+��1+�2�2. . . and �=�0+��1+�2�2. . .. The quantities �0
and �0 represent here the stationary solution of the hydrody-
namic equations in absence of shear flow. If the suspension is
in an aligned state at t=0, when the shear is switched on,
then �0=0 and �0=const. We note, however, that this pertur-
bation analysis breaks down in the region ���c1 of sponta-
neous flow, as in that case both � ,� are spatially varying
even at �=0. It is straightforward to solve Eqs. �6c� and �6b�
to first order in �. We then obtain the linear apparent viscos-
ity defined as �app= lim
̇→0 � / 
̇ and given by

�app =
��1 + ��

� + tanc� kL

2
� , �9�

where tanc�x�=tan�x� /x and

� =
�w�

�1 − ����w�1 − �� − 2��D − w��
, �10a�

k2 =
2��0

2�1 − ��
��1 − w�

−
�w�0

2

�1 − w��D − w��1 +
�1 − ��2

�
� .

�10b�

For passive system �=�=w=0 and �app=�, as expected.
For active nematic, �=w=0 and the apparent viscosity is
simply

�app =
�

tanc� k

2

L

�
� , �11�

with k=�2��0
2�1−�� /�. If ��1−���0, k is imaginary and

the tan function at the denominator of �app is replaced by its
hyperbolic counterpart. Since tanh�x� increases more slowly
than x, the resulting apparent viscosity will increase. If
��1−���0, k is real and since the tan�x� function grows
more rapidly than x, we expect then a rapid decrease in the
apparent viscosity as ��� is increased. This shows that the
linear rheology of pullers-contractile systems with ��1 are
the same as those of pushers-tensile systems with ��1.
From Eq. �9� it is indeed simple to prove that the apparent
viscosity �app is invariant under the transformation

�app��,�,�� = �app�− �,�,2 − �� . �12�

Thus flow-aligning pullers with �=1+� �for 0���1� will
exhibit the same apparent viscosity of flow-tumbling pushers
with �=1−� :�app�−��� ,� ,1+��=�app���� ,� ,1−��. This du-
ality is displayed in the top frame of Fig. 5 that shows the
linear apparent viscosity of active nematic suspensions as a
function of ��� for several values of �. The solid curves �red
online� show that both contractile-flow tumbling suspensions
and tensile–flow-aligning ones are thinned by activity. The
dashed curves �blue online� refer to either contractile-flow
aligning suspensions or tensile–flow-tumbling ones and
show that these systems are thickened by activity. Bacteria
such as E. coli are pushers ���0� and generally elongated in
shape, corresponding to ��1. Our results therefore confirm
the activity-induced thinning of bacterial suspensions first

predicted by Hatwalne et al. �15� and recently observed in
�19�. In contrast, the algae Chlamydomonas that propel
themselves from the front �and are therefore pullers, with
��0�. Whether they are thickened or thinned by activity
depends intimately on their shape, i.e., on whether they can
be described as objects with ��1 or ��1. Similarly, motor-
filament mixtures are generally contractile ���0� and are
expected to be thickened or thinned by activity depending on
the effective value of �.

This duality has a simple interpretation. Active contractile
�tensile� particles produce an ingoing �outgoing� flow in the
surrounding fluid, but while flow-aligning particles orient at
a positive angle with respect to the flow direction, flow-
tumbling particles orient at a negative angle under a small
applied shear �see Fig. 6�. As a result, the average flow fields
produced in the surrounding fluid are identical in the two
cases and produce the same resistance to the imposed shear
flow. This equivalence holds only for small applied shear
stresses. For large shear rates, the configuration of the direc-
tor field of a flow-tumbling suspension is dramatically differ-
ent from that of flow-aligning one and the similarity between
the two flow fields no longer holds.

IV. NONLINEAR RHEOLOGY OF STRONGLY ACTIVE
SYSTEMS

The linear apparent viscosity given by Eq. �11� vanishes
at �=�c1, suggesting the onset of a superfluidlike behavior
above this critical value of activity �17�. For ���c1, the
linearized approximation breaks down and the stress versus
�average� strain rate curve obtained by numerical solution of
the equations is nonlinear and nonmonotonic, as shown in
Fig. 7. We emphasize that the flow profiles are always inho-
mogeneous with varying velocity gradients and director ori-
entation. For �c1����c2, the theoretical stress versus mac-
roscopic �average� strain rate curve goes through the origin
and exhibits a region of negative d� /d
̇ that would in prin-
ciple be mechanically unstable. What would be measured in
an experiment would, however, depend critically on details
of the experimental procedure and the particular apparatus.
To study the steady-state rheology, there are in general two
natural classes of experiments: either �i� one tunes the stress
� and measures the resulting strain rate 
̇ or �ii� one does a
sweep through the values of strain rate 
̇ and measures the

FIG. 5. �Color online� Schematic example of the flow field sur-
rounding tensile–flow-aligning �right� and contractile–flow-
tumbling active particles. For the choice of the parameters � and �
given in Eq. �12�, the two flows are identical, leading to an equal
apparent viscosity.
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stress �. If the stress-strain rate curve is monotonic, the two
procedures are expected to yield the same result. However,
this is no longer the case as soon as the response exhibits
nonmonotonicity.

An important question, then, is what is the shape of the
stress-strain rate curve that would be obtained experimen-
tally for ���c1 in an experiment where one tunes the mac-
roscopic strain rate 
̇. Several scenarios are possible, as
shown in Fig. 8 for a nonmonotonic curve with maximum or
minimum at ��m.

�i� One scenario, suggested recently �17� based on nu-
merical studies in the proximity of the isotropic-nematic
phase transition and for small value of the active stress �, is
the appearance of bulk shear bands accommodating a range
of macroscopic shear rates at zero stress. This would corre-
spond to the bulk stress-strain curve displayed in the top
right frame of Fig. 8 and characterized as “superfluid” be-
havior. In the simplest picture, the sheared suspension would
separate in bands of constant and opposite strain rates, each
with zero stress. For the systems studied here �deep in the
ordered phase, either nematic or polar�, we find that the
equations of motion provide no mechanism for selecting a
particular value of the stress plateau and are unable to find a
stable stress plateau at any value of �����m �including �
=0, see Fig. 8�. Furthermore, we always find flow profiles
with continuously varying gradients of fluid velocity for all
values of macroscopic strain rate 
̇, implying that the picture
of two bands of constant strain rate would be at best an
idealization.

�ii� An alternative scenario that is observed in other driven
systems, such as charge-density waves in anisotropic metals
�24� and collections of motor proteins �25�, is shown in the
bottom right frame of Fig. 8. In this case, the system is
expected to exhibit hysteresis, with regions that accommo-
date coexistence of a range of macroscopic strain rates, cor-
responding to the constant value ��0 of applied stress. In
general, �0 may coincide with �m or may be lower, with the
system exhibiting “early switching.” The width of the hori-

FIG. 6. �Color online� Apparent viscosity �app for active nem-
atic �top� and polar �bottom� suspensions from Eq. �9�. Solid �red�
lines represent flow-tumbling systems ���1� while dashed �blue�
lines represent flow-aligning systems ���1�. The corresponding
values of � are indicated next to the lines. In the bottom plot, � was
set to zero. Top frame emphasizes the duality discussed in the text.

FIG. 7. �Color online� Top left frame displays a typical theoret-
ical stress-strain curve of a nematic active suspension in the region
�c1� �����c2. The theoretical curve is obtained by tuning 
̇ and
calculating the resulting � and exhibits a region of d� /d
̇�0. The
other three frames show three possible experimental stress-strain
curves obtained by tuning � and measuring 
̇ that could be consis-
tent with the theoretical curve. Top right frame displays the super-
fluid scenario suggested in �17�, with bulk shear bands accommo-
dating different macroscopic shear rates and zero net stress, so that
the apparent viscosity of the system is simply zero. Bottom left
frame shows a yield-stress-like behavior with a yield stress �y

=�m. The last scenario is described in the bottom right frame and
corresponds to a hysteretic stress-strain curve where the suspension
can accommodate a range of macroscopic strain rates maintaining a
constant total stress ��0.

FIG. 8. �Color online� Stress-strain curves of a nematic suspen-
sion ��=w=0� obtained by numerical solution of the active hydro-
dynamic equations for several values of �. �c1=0.219 and �c2

=0.877 for the parameters chosen in the numerical solution.
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zontal hysteretic region of the stress-strain curve decreases
with increasing �. In this picture, the particular steady-state
behavior observed will depend on the initial conditions and
particular flow history of each sample.

�iii� Another possibility is that the system shows a yield-
stress-like behavior with a yield stress ��y whose sign is
determined by the direction of the flow. The value of the
yield stress could also be anywhere in the “unstable” range
of stress: �y ��m.

�iv� Finally, there is one more possibility: that the theoret-
ical curve would indeed be reproduced by an experiment
which scanned through different values of the macroscopic
strain rate. The theoretical curve has been calculated by fix-
ing 
̇ and calculating the corresponding value of � under the
assumption that there are variations in the director and flow
field only in the gradient direction �i.e., perpendicular to the
plates�. If this assumption is valid, every point on this curve
does therefore represent a stable state corresponding to this
procedure.

For ���c2, the stress-strain curve intercepts the 
̇=0
axis at a finite value �c=��
̇=0� of the strain rate. The ac-
tive suspension has a nonzero spontaneous stress even in the
absence of applied forces, as indeed observed in the sponta-
neous flow regime of an active suspension confined between
two stationary no-slip planes. In other words, a finite force
must be applied to the active suspension to keep it from
sliding even at zero mean strain rate. This spontaneous stress
�c is shown as a function of � in Fig. 9. The sign of the
stress determines the direction of spontaneous flow.

We now speculate on the possible behavior of the system
for each of the scenarios sketched above as � goes through
�c2. The behavior is shown schematically in Fig. 10. �i� In
the superfluid scenario, the response of the suspension to an
applied macroscopic strain rate will show yield-stress behav-
ior. The system would smoothly go from the zero-stress pla-
teau to a yield stress which increases from zero at �c2. �ii� In
the hysteretic scenario, the minimum height of the hysteretic
loop becomes 2�c, i.e., �c��0��m. �iii� In the yield-stress
scenario, the system already shows yield-stress behavior
which continues for ���c2. �iv� In the nonmonotonic sce-
nario, the nonmonotonic stress-strain rate curve shows a
jump at 
̇ whose magnitude increases from zero at �c2.

V. DISCUSSION AND CONCLUSIONS

We have studied the rheological behavior of a thin film of
polar and apolar active materials. For weakly active systems,
in the regime of the linear rheology, we have confirmed ana-
lytically the prediction of Hatwalne et al. �15� that activity
can lower the linear bulk viscosity of tensile suspensions of
swimmers as well as enhance the viscosity of contractile sys-
tems. We have shown that this result applies also for finite
systems, in the presence of boundaries.

An important result of our work is the role of the shape of
the active particles in controlling the rheological behavior.
We find a remarkable exact duality that holds in the regime
where the stress-strain rate relation is linear and shows that
tensile ���0� rod-shaped flow-aligning particles ���1� are
rheologically equivalent to contractile ���0� discotic flow-
tumbling particles �−1���0�. This means that activity
lowers the linear viscosity of both tensile, rod-shaped par-
ticle and contractile, disk-shaped particle suspensions, while
it increases the linear viscosity of contractile, rod-shaped
particle and tensile, discotic particle suspensions.

For strongly active systems, we find that the rheological
response is intrinsically nonlinear. The regime of linear rhe-
ology at small strain rates vanishes beyond a critical value of
activity. In this strongly active regime, we explore a number
of possible scenarios for the nonlinear rheology which in-
clude a superfluid phase with vanishing viscosity, hysteresis,
yield-stress behavior, and nonmonotonic behavior. Our one-
dimensional analysis does not, however, allow us to deter-
mine which of these scenarios is more likely. It is of course
possible that allowing for variations of the director and flow

FIG. 9. �Color online� Yield stress �c as a function of � for a
nematic suspension ��=w=0� obtained by numerical solution of
the active hydrodynamic equations.

FIG. 10. �Color online� Possible scenarios for the transition to
the yield-stress regime at ���c2. The nonmonotonic curve ob-
tained numerically is shown in the top left frame. In the superfluid
scenario �top-right�, the plateau at �=0 divides into two discon-
nected branches terminating at �= ��c. In this case, the yield stress
is expected to grow monotonically from zero. In the yield-stress
scenario �bottom-left�, there is already a nonzero stress at 
̇=0 and
thus the yield stress simply continues increasing with no qualitative
change in the behavior at �c2. In the hysteretic scenario �bottom-
right�, the loop intersects the positive � axis at ��0, with �c��0

��m.
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field in higher dimensions or allowing for variations in the
magnitude of the order parameter would yield a criterion for
selecting one of the proposed scenarios.
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APPENDIX: DERIVATION OF EQS. (3)

In this section, we show some details of the derivation of
the modified “passive” terms in the equation for the director
field p in the polarized state, when fluctuations in the mag-
nitude of the order parameters are neglected. The equation
for the full vector order parameter P has the form

��t + v · ��Pi = �uijPj + hi + �f i. �A1�

Equation �A1� can be separated in two equations for the
magnitude P= �P� of the polarization and its direction p
=P / P using

�tP = pi�tPi, �A2�

�tpi =
1

P
�ij

T�tPj , �A3�

where �ij
T =�ij − pipj is a transverse projection operator, with

the result

�tP = P��uijpipj� + �f � + h� ,

��t + v · ��pi + �ijpj = ��ij
Tujkpk +

1

P
��f i

� + hi
�� ,

where we have defined

h� = p · h, hi
� = �ij

Thj, f � = p · f, f i
� = �ij

T f j .

In the ordered state, fluctuations in the magnitude P of the
polarization are overdamped and will be neglected. We can

assume, on the other hand, to be deeply in the polarized state
and that P=�−a2 /a4 is constant. For simplicity, we redefine
the units so that P=1. The condition P=const determines the
longitudinal part h� of the molecular field. This requires

h� = −
1


��f � + �uijpipj� .

The above expression can be now used to eliminate h� from
the density j=�h+�f appearing at the right-hand side of
Eq. �1a�. Expressing hi= pih� +hi

� and f i= pif � + f i
�, we obtain

ji = pi��1 − ��f � − 
��uklpkplpi + �hi
� + �f i

�, �A4�

where �= ���2 / ��� is a dimensionless parameter and 
�
=� /. Similarly, the stress tensor �ij

r becomes

�ij
r = − �ij� −

�

2
�pihj

� + pjhi
�� +

1

2
�pihj

� − pjhi
�� − �pipjh� .

�A5�

The longitudinal and transverse parts of the driving force f i
are given by

f � = −
C

c0
2p · �c −

B1 − B3

c0
p · ��� · p� ,

f i
� = �ij

T�−
C

c0
2� jc −

B1 − B3

c0
� j � · p� .

Similarly, the transverse part of the molecular field is given
by

hi
� = �ij

T�B1 − B3

c0
� jc + �K1 − K3�� j � · p + K3�

2pj� .

Replacing the explicit expressions of h�, hi
�, f �, and f i

� in
Eqs. �A4� and �A5�, we finally obtain

ji = − �D�1 − ��pipj −

�w

c0
�ij

T�� jc − 
��uklpkplpi,

where w=�B1−B3� is a velocity and we have neglected
terms of second and higher orders in the hydrodynamic
fields. Finally, the reversible part of the stress tensor is given
by

�ij
r = − �ij� + �pipjpk�B1 − B3

c0
�kc + �K1 − K3��k � · p + K3�

2pk�
−

�

2
�B1 − B3

c0
�pi� jc + pj�ic� + �K1 − K3��pi� j + pj�i� � · p + K3�pi�

2pj + pj�
2pi��

+
1

2
�B1 − B3

c0
�pi� jc − pj�ic� + �K1 − K3��pi� j − pj�i� � · p + K3�pi�

2pj − pj�
2pi��

− ���pipj�Dpk�kc + wpk�k�lpl� +
�2


pipjuklpkpl.

Taking K1=K3=K leads to the equations given in Sec. I.
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